焦炭时间序列(线性时间序列)

焦炭时间序列(线性时间序列)

日期:2020-02-12 11:01:06

线性时间序列

线性时间序列

时间序列的特点

时间序列的特点

一、时期序列的特点:

1、指标数值是可加性的。

2、其中每个指标数值的大小和它所体现反映出的时期长短具备直接关系。

3、每个指标的数值多数是经过不断的登记汇总得到的。

二、时点序列的特点:

1、平稳性是时间序列的重要特征。如果时间序列的统计特性不随时间变化,则称其为静止的。换句话说,它具有恒定的均值和方差,协方差与时间无关。

2、其中每个指标数值的大小和它所体现反映出的时期长短不具备直接关系。时间序列只是一系列排序的数据点。在时间序列中,时间通常是自变量,目标通常是对未来进行预测。

3、每个指标的数值多数是经过一次性的登记汇总得到的。

时间序列(时期序列和时点序列)的原理:

时间序列是将某种统计指标的数值,按时间先后顺序排序所形成的数列。

时间序列的预测就是通过分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,预测下一段时间或以后若干年内可能达到的水平。

时间序列的异常检测就是通过历史的数据分析,查看当前的数据是否发生了明显偏离了正常的情况。

参考资料来源:-时间序列

短期多个时间序列

短期多个时间序列

时间序列数据有哪些

时间序列数据有哪些

这要看你的数据是选取的是1998-2010年单一某地碳排放量(Y)和GDP(X)的数据,还是多个地方的数据了。前者是时间序列数据后者是面板数据(时间序列数据是指同一说明变量在不同时点上同一地点的观测值,简单来讲就是仅仅是某地的Y和X的数据;而面板数据指的是同一说明变量在不同时点上多个地点的观测值,比如Y和X选的是多个省的数据)。应该能看懂吧。

对于第二个问题:协整性检验和平稳性检验选取的变量是一样的。
协整分析需要首先检验各个序列的平稳性,即进行单位根检验。对多变量来说一般可以用ADF检验和PP检验。
其次,再进行各个变量之间的协整检验。协整检验的方法有EG两步法和JJ检验法。EG两步法一般是针对两个变量之间的协整关系进行检验,对于3个或以上的变量一般采用JJ检验法。
再次,利用向量误差修正模型(VECM)建立各个变量之间的短期均衡关系,将长期均衡关系作为误差纠正项纳人方程中,以反应短期波动偏离长期均衡的程度。接着,可以利用Wald检验对误差修正模型各方程系数的显著性进行联合检验,从而判别各变量因果关系的方向。

时间序列算法

时间序列算法

XML 地图 | Sitemap 地图